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Abstract

A real-time guidance scheme for the problem of maximizing the pay-

load into orbit subject to the equations of motion for a rocket over a spheri-

cal, nonrotating Earth is presented. An approximate optimal launch guidance

law is developed based upon an asymptotic expansion of the Hamilton-Jacobi-

Bellman or dynamic programming equation. The expansion is performed in

terms of a small parameter, which is used to separate tile dynamics of the

problem into primary and perturbation dynamics. For the zeroth-order prob-

lem the small parameter is set to zero and a closed-form solution to the zeroth-

order expansion term of the Hamilton-Jacobi-Bellman equation is obtained.

Higher-order terms of the expansion include the effects of the neglected pertur-

bation dynamics. These higher-order terms are determined from the solution

of first-order linear partial differential equations requiring only the evaluation

of quadratures. This technique is preferred as a real-time on-line guidance

scheme to alternative numerical iterative optimization schemes because of the

unreliable convergence properties of these iterative guidance schemes and be-

cause the quadratures needed for the approximate optimal guidance law can

be performed rapidly and by parallel processing. Even if the approximate solu-

tion is not nearly optimal, when using this technique the zeroth-order solution
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always provides a path which satisfies the terminal constraints. Results for

two-degree-of-[reedom simulations arc presented for the simplified problem o[

flight in the equatorial plane and compared to the guidance scheme generated

by the shooting method which is an iterative second-order technique.
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Chapter 1

Introduction

An approach to real-time optimal launch guidance is suggested here

based upon an expansion of the Hamilton-Jacobi-Bellman or dynamic pro-

_amming equation. In the past, singular perturbation theory has been used

in expansion techniques used to solve optimization problems [1, 2, 3]. For

singular perturbation methods the states are split up into a set of 'fast' and

'slow' variables. The solution is then sought in two separate regions; one re-

gion where the fast states are dominant and an outer region where the slow

states are determined. A composite solution can then be determined by com-

bining the two solutions. Matching asymptotic expansions is one method for

obtaining the final solution. This research uses a regular asymptotic expansion

which is assumed valid over the entire trajectory of the launch optimization

problem. An example of a launch optimal control problem is to determine the

angle-of-attack profile which maximizes the payload into orbit subject to the

dynamic constraints of a point mass model over a rotating spherical Earth.

The solution of this type of optimization problem is obtained by an iterative

optimization technique. Since the convergence rate of iterative techniques is

difficult to quantify and convergence is difficult to prove, these schemes are not

suggested to be used as the basis for an on-line real-time guidance law.

In contrast, an approximation approach is developed which is based
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upon the physicsof the problem. Thrust and gravity are assumedto be the

dominant forcesencounteredby the rocket while the angle-of-attackis usually

kept small in order to minimize the effect of the aerodynamic forcesacting

on the vehicle. Numerical optimization studies [4]havebeenperformed which

support this assumption. These results also indicate that ignoring the aero-

dynamic pitching moment has a negligible effect on the performanceof the

vehicle. Thus the launch problem would seemto lend itself to the useof per-

turbation theory. It is shownthat the forcesin the equationsof motion canbe

written as the sum of the dominant forcesand the perturbation forceswhich

aremultiplied by a small parameter c, where ¢ is the ratio of the atmospheric

scale height to the radius of the Earth. The motivation for this decomposition

is that for ¢ = 0, the problem of maximizing the payload into orbit subject to

the dynamics of a rocket in a vacuum over a fiat Earth, is an integrable opti-

mal control problem. The perturbation forcing terms in the dynamics producc

a nonintegrable optimal control problem. However, since these perturbation

forces enter in with a small parameter, an expansion technique is suggested

based upon the Hamilton-Jacobi-Bellman equation. The expansion is made

about the zeroth-order solution determined when c = 0. This zeroth-order

problem is now solved routinely in the generalized guidance law for the Space

Shuttle [5] with a predictor/corrcctor scheme employed to guide the vehicle

along the desired path.

The higher-order terms of the expansion are determined from the

solution of first-order linear partial differential equations which require only

integrations which are quadratures. Quadratures are integrals in which the in-

tegrand is only a function of the independent variable. Previous so]ution meth-
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ods applied to guidance problems have motivated the approach suggested here.

These include the explicit gnlidance laws, E-galidance, developed by George

Cherry [6] for the Apollo flight. By writing the dynamics strictly as functions

of the independent variable a solution was obtained by quadrature integra-

tions. Past applications [7, 8] of the proposed scheme, have shown that very

close agreement with the numerical optimal path is obtained by including only

the first-order term. Because no iterative technique is required, this scheme is

suggested as a guidance law since the quadratures can be performed rapidly.

Chapter 2 contains a general formulation of the perturbation prob-

lem associated with the Hamilton-Jacobi-Bellman partial differential equation

(HJB-PDE). The technique for determining the higher-order expansion terms

due to the perturbation forces caused by the atmosphere and the spherical

Earth model is discussed. Lastly, the recursive relationship for the control is

presented. In Chapter 3, the characteristics for the Advanced Launch System

(aka National Launch System) and the general equations of motion in terms of

the small parameter e, are given. For e = 0, a simplified optimal launch problem

in the equatorial plane is formulated, and its solution in terms of elementary

functions is given in Chapter 4. The coordinate system transformation used

to obtain the analytic solution is included. Also discussed is the linking of the

trajectory subarc for the first stage to the subarc of the second stage. In Chap-

ter ,5 the first-order correction term to the control is determined. Results are

presented in Chapter 6 and compared to the shooting method solution, which

is a numerical iterative second-order optimization technique. It was found that

during much of the first stage the aerodynamics are not small when flying the

optimal vacuum trajectory. Chapter 7 presents a method for reshaping the



zeroth-order trajectory by including an aerodynamiceffect. This effort cen-

ters on the useof constantaerodynamicpulsefunctions which are obtained by

averagingthe aerodynamicsalong the zeroth-orderpath during varioustime

intervals. Lastly, Chapter 8 relates perturbation theory and the Calculus of

Variations with the expansionof the Hamilton-Jacobi-Bellmanequation. Tile

equivalenceof the two solution methods is presented.



Chapter 2

The Peturbed Hamilton-Jacobi-Bellman Equation

The optimal control problem can be formulated as one which mini-

mizes a performance index subject to a set of nonlinear dynamics and a set of

terminal constraints; that is,

Minimize

with the dynamics

J = (2.:)

= f(y, u, r) + _9(y, u, r)

subject to the terminal constraints

(2.2)

qJ(yf, Tf) ----0 (2.3)

and the initial conditions

y(t) = x = given (2.4)

Note that Y is an n-dimensional state vector, u is an m-dimensional control

vector, _ is a small parameter, r is the independent variable, _) =a dy/d'r, t is

the initial value of the independent variable, and x is the initial state at t.

Eq. (2.2) is separated into two portions: primary and secondary dy-

namics. Note that the control appears in both parts. The primary dynamics

5



can be assumed to dominate over the secondary dynamics because the sec-

ondary dynamics are multiplied by the small parameter (e) and therefore have

a small perturbing effect on the system.

The Hamilton-Jacobi-Bellman (H-J-B) equation [9] is

- Pt = H °pt = min H = p_[/o_t + cgOpt] (2.5)
uEbt

where/4 is the class of piecewise continuous bounded controls and u_t(x, P_., t)

is obtained from the optimality condition H_ = 0 and from the assumption

that the Legendre-Clebsch condition is satisfied (H_,_, is positive definite). In

addition, fopt =_ f(x, uOpL, t) and gore _ g(x, uOpt,t). The Hamilton-Jacobi-

Bellman equation will be used to determine the optimal control policy which

minimizes the cost criterion J.

The function P(x, t) is called the optimal return function and is de-

fined as the optimal value of the performance index for a path starting at x and

t while satisfying the state equations (2.2) and the terminal constraints, i.e.,

P(x,t) = ¢(yl,r/) at the hypersurface _P(y/,'r/) = 0. The Hamilton-Jacobi-

Bellman partial differentional equation (2.5) can be interpretated [10] as the

derivative of the optimal return function P. The optimal return function is

a constant since it is dependent only on the terminal conditions and thus the

total derivative of the optimal return function along an extremal path must be

zero.

dP Pt + p_[fovt + cgOpt] 0
dt

Each point in space belonging to the optimal trajectory must give the same

value to the optimal return function as the optimal P(x, t) since the trajectory



is considered optimal from thc initial conditions (x, t) to the terminal manifold.

Now, if a non-optimal control is chosen at any point in the trajectory, then the

resulting terminal state, as generated by' the system equations, must produce a

value for the optimal return function equal to or greater than the optimal value.

Thus the control that minimizes the cost is the control which at each point of

the trajectory causes the derivative of the optimal return function to be zero.

This is the fundamental notion represented by the Hamilton-Jacobi-Bellman

equation. Note that x and t can be either the initial or the current state and

time, respectively. In this context, it will be used to represent the current state

and time. Also note that ew._ry admissible trajectory must satisfy the terminal

constraints qJ(Yl, rl) = O.

P(z, t) can be expanded ,as a series expansion in e as

,_'(_,t)= _ f',(_, t)_' (2.6)
i=O

and the optimal control can also be expanded in a series expansion as

oo

_°_(_, &,t)= _ _,(_,t)_' (2.7)
i=0

where u _t is obtained by substituting Eq. (2.6) into Eq. (2.7) and expanding

the function. Therefore, it is possible to obtain the control law in feedback

form.

The zeroth-order control, Uo, is the optimal control for the zeroth-

order problem where e = 0. If an analytic solution can be obtained for the

zeroth-order problem then higher-order solutions for the control can be ob-

tained by expanding the Hamilton-Jacobi-Bellman equation

P, = Z P,,(_, 0_'= - F,_(_,t)_' f,_' + _g,_' (9.8)
i----O i=O i= 1
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where the dynamics have been expressed as expansions of the form

OC

f°Pt(m, u °m, t) = _ f_(x, u, t)d (2.9)
i=0

f"(x, t)= (2.1o)
i=O

Expanding Eq. (2.8) and collecting terms of equal powers in e, produces the

following set of linear, first-order, partial differential equations

i-I

Pit + P_zf_ t = - _ Pjz(fi-j _- gi-j-l)

j=o

= R4(z,t, ei-l,...,Po)

i= i,2,... (2. ii)

The expansion of the Hamilton-Jacobi-Bellman equation will be detailed in the

next section.

2.1 Expansion of the H-J-B Equation

The solution to the optimal control problem requires the evaluation of

the Lag-range multiplicr, P_. Note that the quantity P_ is the partial derivative

of the optimal return function with respect to the state y at the initial time

or the current time (since at r = t, y = x). The function P= is expanded in

a series in the small paramcter e. The terms of this series expansion, P_=, are

evaluated in terms of quadrature integrals which are functions of P_. Recall that

the functions P_ require the previously evaluated terms Pj=, f,_j, and g__j_ l

for j = 1,...,i - 1. The coefficients f, and gi are the i it' term in the series

expansion of f and g given in Eqs. (2.9)-(2.10). Since f and g are assumed to

be sufficiently differentiable, they are expressible in a power series in e in terms
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of the conLrol. For a scalar control, this yields

, uje 3 (2.13)
g°Pt(x, It °pt t) = 0U i x,t,_=0 _

The above equations assume that the zeroth-order control, uo, is the dominant

term in the series (Eq. (2.7)). This implies that the higher-order correction

terms, 7zl, _z2, ..-, have a much smaller ef[cct on the optimal return flmction,

[_(x, l), than the zeroth-order term. rFhe first ['our terms of f and g are obtained

by use of [']qs. (2.12) _n(i (2.13).

fo -- f°m(x, Tzo,t)= f(x,_zo, t) (2.14)

fl = utf_(x, uo, t) (2.15)

zt 2

& - _f_(x, uo, t) +u2f_(x, uo,t) (2.16)
tt 3

f3 -- -j f_,_,_(x, Zto, t) + zt,Tz2f_,(:c, Uo, t)

+u_f_(_, _o,t) (2.17)

9o = 9°_(_, _,o,t) = 9(x,_o,t)

gl = ulg,,(:c,uo,t)

_ - 2 _""(_:'_o,t) + _9,,(x, uo,t)

g3 - 6 g,,_,(X, Uo, t) + Ulu2guu(X, Uo, t)

+u39,,(x, uo, t)

(2.1s)

(2.19)

(2.20)

(2.21)
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Note that in taking the partials with respect to u in Eqs. (2.12) and (2.13), the

partial is taken first and then the partial is evaluated at x, t with c set equal to

zero. In other words, the partials arc evaluated along the zeroth-order path.

2.2 Solution by the Method of Characteristics

The H-J-B equation (Eq. (2.5)) is a first-order partial differential

equation. The expansion of the H-J-B equation results in the first-order dif-

ferential equation for P_ stated in Eq. (2.11) with the boundary condition

P_(xl,tl) = 0, for i = 1,.... Recall that f_t denotes the dynamics of the

zeroth-order problem (e = 0) using the zeroth-order control u = u0. Recall also

that the forcing term /_ is only a function of expansion terms of P of order

less than i.

The method of charactcristics is used to solve a set of linear or quasi-

linear partial differential equations. This technique [11] requires the identifi-

cation and solution of characteristics curves. The characteristic direction ds is

defined by the equation

Pi,(dT)s + P_,(dy), = (dP_)., i= 1,o,, ..- (2.22)

Eqs. (2.11) along with (2.22) can be put in the form

(ayL = (aP, L

The characteristic directions for Eq. (2.23) are given by the solution of the

differential equation that is obt'ained by setting the determinant of the matrix

given in Eq. (2.23) equal to zero, such that

(dy)s- fo(d'r)s = 0 ==_ (dy/dv), = fo (2.24)
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The subscript s denotes tile characteristic direction. Therefore, the charac-

teristic curves of the equations, for any order term of P/, are given by the

zeroth-order optimal trajectory

90 = f0 (2.25)

whose solution is denoted as yo(r; x, t).

The solution for P/ is given by

P,(x, t) = - fit, R°dT (2.26)

where /_ is defined along the zeroth-order path as

R °= l_(yo,r, Pi__(yo,r),',Po(Yo, r)), i= 1,2,... (2.27)

Thercfore, having already dctermincd P terms of order less than i, a solution

for P, can be determined by integrating R4 from the current 'time' to the final

'time' along the zeroth-ordcr path.

2.3 Determination of the Optimal Control

Since the primary and secondary dynamics, f and g, are expanded

in terms of the control (Eqs. (2.12) and (2.13)), the control expansion terms

u0, ul, u2, ..-, need to bc determined. The optimality condition provides the

necessary tool to obtain these control tcrms. It can be stated as

Px[f_ + eg_] = P,= ei (fi_ + eg,.)e' = 0 (2.28)
-- i=0

By expanding and multiplying out the terms of the two power series and equat-

ing like powers of e, the following relations are obtained

e° : P0. £ = 0 (2.29)
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1 2

+&.[9,, + u:f..] + P2.f. =0

(2.30)

(2.31)

Note that uo, the optimal control for the zeroth-order problem, can

be solved using Eq. (2.29). Similarly, ul can be solved using Eq. (2.30) and u2

can be solved using Eq. (2.31).

2.4 Determination of the Forcing Functions

Eqs. (2.14)-(2.21) and (2.29)-(2.31) can be used to solve for the

forcing functions Ha where Eq. (2.11) can be restated as

i--I

Ha= - Z PJ_(f,-J + ._t,-,-,) i = 1,2,...
j=O

Using the above equations, RI is

R, = - &.(f, + o0) = -&.(u,L + g)

With the use of the optimality condition of Eq. (2.29), R_ becomes

(2.32)

Similarly, the equation for It2 is

(2.33)

R2 = -- Po.(f2 + gl) - Pl=(fl + go) (2.35)

R2 simplifies to the following equation when Eqs. (2.14)-(2.21) and (2.29)-(2.30)

are substituted into the previous equation.

u_ D
R2 = --_, o=L_, - Pl_go (2.36)

& = - &=go (2.34)
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Finally, R3 can be expressed as

R3 = -Po.(f3 +g2) - P,.(f2 +gl) - P2.(fL +go) (2.37)

This simplifies to

ULU 2 _ 1 U 1 Ul= ,,:.or':,-+ ,-,.[go+yI.](2.38)

Using the expression for Ri, the expression for the Lagrange multipli-

ers, Pi., can be expressed as

OP, fits OP_ dr Ot Ot I- Ox - -_z + _lt_- _1_, Ox (2.39)

Once these P,, are determincd, they can be used in the optimal control ex-

pansion (Eq. (2.7)). As made apparcnt in the above equations, the solution

becomes increasingly complex as thc higher-order correction terms rely on the

state information from the lower-order trajcctories.



Chapter 3

Modelling of the ALS Configuration

This chapter presents the modelling characteristics and the equations

of motion for the rocket. Included are sections on the properties of the propul-

sion, aerodynamics, masses, gravity, and the atmosphere. A small expansion

parameter, the ratio of the atmospheric scale hc'ight to the radius of the Earth,

is then used to separate the dynamics into the primary and perturbation ef-

fects. Lastly, the equations of motion for the zeroth-order problem of flight in

a vacuum over a flat Earth are presented.

The Advanced Launch System (ALS) is designed to be an all-weather,

unmanned, two-stage launch vehicle for placing medium payloads into a low

Earth orbit. The spacecraft (fig. 3.1) consists of a liquid rocket booster with

seven engines and a core vehicle that contains three engines. All ten liquid

hydrogen/liquid oxygen low cost engines are ignited at launch. Staging occurs

when the booster's seven engines have exhausted their propellant. The three

core engines burn continuously from launch until they are shut down at or-

bital insertion. Launched in the equatorial plane and ending at the perigee

of a 80nm by 150nm transfer orbit, the flight occurs in two-dimensions over a

nonrotating, spherical Earth. Note, the booster is assumed to ride on top of

the core throughout the first stage trajectory.

14
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Figure 3.1: ALS Vehicle Configuration
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3.1 Equations of Motion for the Launch Problem

The general equations of motion for a launch vehicle modelled as a

point mass over a spherical, nonrotating Earth are given for flight in three-

dimensions as

h

=

=

Vsin7 (3.1)

(T cos_ cos_ - D)
- g sin y (3.2)

m

[- (T cos a sin/3 - Q) sin # + (T sin a + L) cos/z]

mV

V g

+[(To+hi _]cos7
[(Tcos_sinB-Q)cosl_ + (T sin c_ + L) sin/_]

(3.3)

= (mV cos_)
V tan ¢ cos y cos X

4 (re+h) (3.4)

V cos "f cos X (3.5)= (re + h) cos¢

_) = V cos ")"sin X (3.6)
(re +h)

rh = -aT.,c (3.7)

The vehicle coordinate system is shown in figure 3.2. Note, the engines are not

gimbaled and the aerodynamic pitching moments are neglected. For a vertical

launch Eqs. (3.3)-(3.4) experience a singularity caused by the velocity being

zero and by a flight path angle of 90 degrees, respectively. Therefore, a pitch-

over maneuver must be made at launch and equations of motion written in a

different coordinate frame must be used.
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Figure 3.2: Coordinate Axis Definition
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3.2 Propulsion

Thrust is assumed to act along the centerline of the booster-core vehi-

cle configuration and to be the same constant value for each engine. The total

thrust of the rocket changes after staging as the seven engines of the booster

are discarded, leaving only the three engines of the core vehicle.

T = (T,_c - npA_) T,,_ = n x 580, 110. lbs.

where T,,,c is the total value of the thrust when acting in a vacuum and the

number of engines is n = l0 for the first stage and n - 3 for the second stage.

Notice the variation of the thrust due to the atmospheric pressure p is given

for an undcrcxpanded nozzle and thus a conservative value for thrust is used.

The value of the engine nozzle exit area is A_ = 5814.8/144. sq ft. The specific

fuel consumption of the rocket is

and the specific impulse I_p

after staging occurs.

l sea
= (3.8)

I_p g_ ft

= 430. seconds. The value of a remains the same

3.3 Aerodynamics

Since sideslip causes drag, the vehicle is assumed to fly at zero sideslip

angle, so that only the angle-of-attack gives the orientation of the vehicle rel-

ative to the free stream. The direction of the lift vector is then controlled

through the velocity roll angle. With no sideslip, the side force Q is identically

zero. Therefore,
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Figure 3.3: First Stage Drag Model
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Figure 3.4: First Stage Lift Model
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L = Ct.qS, D = Ct)qS, Q = CQqS = O (3.9)

where CL, Co, CO. are the lift, drag, and side force coefficients, respectively, S is

1 2
the cross-sectional area of the combined vehicle (booster + core), and q = ipV

is the dynamic pressure. The cross-sectional area S is assumed to be the same

constant value before and after staging occurs.

The aerodynamic data has been provided in tabular form [4] and is

modelled by polynomials in a with Mach-number-dependent coefficients. For

the first stage, the aerodynamic coefficients arc written as

CD(M, ol) = Coo(M) + CD 2(M)ol 2 + CD 3(M)c_ 3

CL(M,o_) = CL_(M)c_ (3.10)

where the Mach-number-dependent terms have been obtained from cubic-spline

curve fits of the tabular data. Three-dimensional plots [12] of the first stage

drag and lift models are shown in Figmres 3.3 and 3.4. Note that the drag

coefficient of this vehicle at supersonic and hypersonic speeds has a minimum

at a positive angle of attack as shown in Figure 3.3. This is caused by the

aerodynamic shielding of the booster by the flow field of the core.

After staging, the vehicle operates in the hypersonic flow regime and

the aerodynamic force coefficients are modelled as

CD(OI) ----- CDo Jr- CD,_ Ol -t- CDc, 2

CL(a) = CL.a + CL _a 2

Ot 2

(3.11)

with constant coefficients CDo = .2011, CD,_ = 0.0, CD,_2 = .001811, CL_. =
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Figure 3.5: Second Stage Aerodynamic Model

.039962, and CL2 = .00100272. Tile aerodynamic plot of CL and CD is pro-

vided in figure 3.5.

3.4 Mass Characteristics

The inert weights of the booster and core, the weight of the propellant,

the payload and payload margin, and the weight of the payload fairing comprise

the ALS takeoff weight. The fairing encases the payload and is carried along by

the core vehicle until orbital insertion. The vehicle mass and sea-level weight

characteristics are shown in Table 3.1. The time at which staging is to occur is

obtained from the first stage mass flow rate and the propellant of the booster

rr_-o_tt,_,,t = 153.54 sec.
tstage _- 7aT,_c
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Vehicle Stage Vehicle Component Take-off Weight

(lbs.)
Inert Mass

Core

Booster

Core + Booster

176,130.00

Propellant 1,479,180.00

Payload 120,000.00

Payload Margin 12,000.00

Payload Faring 39,120.00

Total Core

Inert Mass

Propellanl:

1,826,430.00

216,880.00

1,449,980.00

Total Booster 1,666,860.00

Total at Take-off 3,493,290.00

Table 3.1: Vehicle Mass Characteristics

where the vacuum thrust per engine is T_o_ = 580110.

Once the stage time, tile total first stage mass flow rate, the takeoff

weight, and the inert weight of the booster are known, then the weight of the

vehicle at the end of tile first stage and the initial weight in the second stage

can be calculated. For this vehicle the values are

msao,1 = 1421890. lbs., mst_oc2 = 1250010. lbs., Amst_gc = 216880. lbs.

3.5 Gravitational and Atmospheric Models

The gravitational acceleration is modelled as an altitude-varying func-

tion by the inverse square law,

r 2
e

g = g"(re + h)2
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but will be assumed constant in the zeroth-order problem to facilitate obtaining

an analytic solution. The constant values for gravity at sea-level and for tile

radius of the Earth are

ft
g_ = 32.174 --

see 2
re = 2.09256725 x 10 r ft.

The atmospheric density is expressed by the exponential function,

p = pre-(r¢+h)/ho = pre-rJh, e-h/h, = pse-h/ho (3.12)

where he is the atmospheric scale height and ps is the sea-level reference density.

The values for these parameters are

p, = .002377 slugs h., = 23,800. ft.
ft 3

The form of the density is chosen to motivate the selection of a small

parameter to exclude the aerodynamics in the zeroth-order dynamics. If e is

chosen as

e = hs/rc (3.13)

and defining

_5(e,h) = p(e,h) (3.14)
e

then by atmospheric properties ¢5(e, h) > 0. Tile exponential density also sat-

isfies the requirement [3] that the perturbation term in the dynamics remains

small, i.e.,

lim 6(e, h) --+0 (3.15)
_---+0

Satisfaction of this property will allow more general atmospheric models to be

used in the launch problem.
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The atmospheric pressure is "also expressed as an exponential function,

p -- p_e -h/% (3.16)

where hp is the atmospheric pressure scale height and p_ is the sea-level reference

pressure. The values for these parameters are

lbs

Ps = 2116.24 f-_ hp = 23,200. ft.

The speed of sound can be obtained by thc relationship

SOS _ W_

with the specific heat ratio for air given as F = 1.4 .

The gravity can be rewritten as

gsh(2r_ + h)

g=g_- (r_+h) 2 =gs-

egsh(2r_ + h)r_

hs(r_ + h) 2
(3.17)

where the expansion parameter has formally been introduced and the second

term is clearly small in comparison to the first term which is the value for

gravity at sea-level, g_.

3.6 Expansion Dynamics

In terms of the small parameter c, the full-order equations of motion

are rewritten as

V sin 7

cos c_cos/3 - 9_ sin 7
m

npA.r_
+_ cos a cos f_ +

mh,

g_h(2r_ + h)r_ sin 3'

hs(r, + h) 2

(3.18)

(3.19)

P SV2CDre ]

2mhs ]






















































































































































































































































